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1. Pythagorean mathematical principles 
Pythagoras founded* a school of philosophy in Croton in southern Italy that was renowned throughout the 
ancient Mediterranean world. As much a religious brotherhood as a scholastic academy teaching music, 
astronomy, ethics, arithmetic and geometry, its students were taught mathematics not — as it was 
considered by Plato — as a preparation for an otherworldly contemplation of divine principles but in order to 
contemplate the divine immanent in nature. The mathematical doctrines of Pythagoras cannot be properly 
understood without recognising that the modern dichotomy of science and religion did not exist for the 
Pythagoreans, who believed that man can realise his divine nature by knowing the universal principle which 
governs the cosmos (a word coined by Pythagoras himself, meaning “world-order,” a world ordered in a 
state of mathematical harmony). This principle is Number, which is “the principle, the source and the root of 
all things” (1). For the Pythagoreans, the spiritual and scientific dimensions of number were complementary 
and could not be separated. 

Pythagoras was not only the first to call himself a philosopher but also a priest-initiate of a mystery religion 
influenced heavily by Orphism, which taught that the essence of the gods is defined by number. Numbers, 
indeed, expressed the essence of all created things. According to the Pythagorean Philolaus: “All things 
which can be known have numbers, for it is not possible that without number anything can either be 
conceived or known” (2). The Pythagoreans were the first to assert that natural phenomena conformed to 
mathematical principles and so could be understood by means of mathematics. In this sense, they may be 
considered the first physicists. But their doctrine gradually became distorted into the proposition that not 
only does number express the essence of things but also that, ultimately, all things are numbers. 
Unconvinced by the peculiar emphasis Pythagoreans gave to numbers because he was not privy to the. 
secrets of their teachings, Aristotle said of them: “These thinkers seem to consider that number is the 
principle both as matter for things and as constituting their attributes and permanent state” (3). The 
Pythagoreans thought that numbers had metaphysical characters, which expressed the nature of the 

 
* Pythagoras’ early biographers provide an unreliable, inconsistent chronology.  But, as they agree that he left his home 
Samos for Italy during the rule of its dictator Polycrates (528–522BC) and was deported from Egypt after its invasion by 
Cambyses in 525 BC, he must have started his school at Croton between 525 BC and 522 BC. 

TTTHHHEEE   PPPYYYTTTHHHAAAGGGOOORRREEEAAANNN   NNNAAATTTUUURRREEE   OOOFFF   SSSUUUPPPEEERRRSSSTTTRRRIIINNNGGG   

AAANNNDDD   BBBOOOSSSOOONNNIIICCC   SSSTTTRRRIIINNNGGG   TTTHHHEEEOOORRRIIIEEESSS   

The Pythagorean doctrine of a four-fold hierarchy or pattern in natural phenomena is generalised 
to the formulation of a 'Tetrad Principle' governing fundamental subatomic particle structures and 
processes. This principle is shown to prescribe the group-theoretical parameters of E8×E8, the 
anomaly-free, superstring gauge symmetry group, as well as E8 and its exceptional subgroups 
E7, E6 and F4. The tetractys — the Pythagorean geometrical symbol of whole systems — is 
related to the space-times of superstrings and bosonic strings. As further illustration of this 
powerful principle, the dimensionality of bosonic strings and group-theoretical parameters of E8 
are shown to be embodied in the geometry of the first four Platonic solids, believed by the 
ancient Greeks to be the shapes of the particles of the four elements Earth, Water, Air and Fire. 



 

2 

gods. The number one (the Monad) represented the principle of unity — the undifferentiated source of all 
created things. The Pythagoreans did not even regard it as a number because for them it was the ultimate 
principle underlying all numbers. The number 2 (Dyad) represented duality — the beginning of multiplicity, 
but not yet the possibility of logos, the principle relating one thing to another. The number 3 (Triad) was 
called “harmony” because it created a relation or harmonia (“joining together”) between the polar extremes 
of the undifferentiated Monad and the unlimited differentiation of Dyad. 

Pythagoras (Fig. 1) was the first to use geometrical diagrams as models of cosmic wholeness and the 
celestial order. Numbers themselves were represented by geometrical shapes: triangles, squares, 

pentagons, etc. For example, a ‘triangular number’ is any number that is equal to the number of dots 
forming a triangular array and a ‘square number’ is one that can be represented by a square array of dots 
(Fig. 2). The ancient Greeks generalised such ‘figurative numbers’ by considering nests of n regular 
polygons nested inside one another so that they share two adjacent sides (Fig. 3). Dots denoting the 

number 1 are spaced at regular intervals along the edges of the polygons, the edge of each polygon having 
one more dot than the edge of its smaller predecessor. The total number PN

n of dots in a set of n nested 
regular polygons with N sides is called a “polygonal number.” The number 1 is the first polygonal number, 
i.e., PN

1 = 1. The second polygonal number, which is simply the number of corners of an N-sided, regular 
polygons, is PN

2 = N, the third is PN
3, etc. PN

n is given by: 

PN
n = ½n[(N–2)n – (N–4)] 

Triangular 
number 

Square 
number 

Figure 2 

Figure 1. An artistic portrayal of Pythagoras. 
Hovering like a halo above the sage’s head, the 
tetractys is depicted by Hall as a triangular array 
of ten ‘yods’ (the comma-shaped yod is the tenth 
letter of the Hebrew alphabet). Research by the 
author indicates that it was Pythagoras’ greatest 
discovery, as it turns objects possessing ‘sacred 
geometry’ into numbers of universal (and 
therefore scientific) significance. It was also his 
most enigmatic creation, for modern scholarship 
has not elucidated its power and true significance 
beyond the historically trivial one that it 
symbolized the number 10, or Decad, as the most 
perfect of the numbers. That hidden meaning will 
be revealed in the author’s research articles. 

(From: The Secret Teachings of All Ages, Manley 
P. Hall (The Philosophical Research Society, Inc., 
Los Angeles, California. U.S.A., 1988). 
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Table I lists for future reference formulae expressing the first ten types of polygonal numbers of order n: 

Table I 

 

               3   P3
n   Tn = ½n(n+1) 

               4   P4
n   Sn = ½n(2n–0) 

               5   P5
n   Pn = ½n(3n–1) 

               6   P6
n  Hn = ½n(4n–2) 

               7   P7
n   hn = ½n(5n–3) 

               8   P8
n   On = ½n(6n–4) 

               9   P9
n   Nn = ½n(7n–5) 

             10   P10
n  Dn = ½n(8n–6) 

             11   P11
n  En = ½n(9n–7) 

             12   P12
n  dn = ½n(10n–8) 

 

The best-known polygonal number is the famous Pythagorean Triangle or “tetractys” which, as the 4th 
triangular number, is an equilateral triangular array of ten dots (Fig. 4a). We shall call these dots “yods” 
after the dot-shaped, tenth letter yod of the Hebrew alphabet. The yod (•) at the centre of the tetractys in 

Fig. 4b is the centre of a hexagon whose corners are six other (•) yods. These seven yods will be called 
“hexagonal yods.” The four rows of yods forming the tetractys represent the first four integers 1, 2, 3 & 4. 
The tetractys denotes the number 10, the Decad. For the Pythagoreans, it was the perfect number, 
symbolising wholeness and unity. 

The importance of the tetractys to them is illustrated by their oath of fellowship: 

                        “I swear by the discoverer* of the Tetractys, 
                        Which is the spring of all our wisdom, 
                        The perennial fount and root of Nature (4).” 

Why was this? Surely not merely because the tetractys was a representation of the perfect Decad?! 
Scholars know that it came to signify for the Pythagoreans an all-embracing paradigm for whole systems. 
They believed that a four-fold pattern permeated the natural world, examples of which are the four seasons, 
the point, line, surface and solid and the four elements Earth, Water, Air and Fire. However, this alone does 
not explain why they valued the tetractys so much. This article will reveal deeper meanings of the 
Pythagorean doctrine concerning the tetractys, which link it to current research into the theories of 
superstrings and bosonic strings. It will explain why the Pythagoreans called the Tetrad, or number 4, “the 
greatest miracle.” For, indeed, this is what it is, because it prescribes the mathematical description of the 

 
* A reference to Pythagoras. 

Figure 4 

a b 

PN
n = 

Figure 3. The Nth polygonal number of order n. 
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TETRAD PRINCIPLE 

Integers of significance to the physics of fundamental processes are always either: 

1) the 4th member of a class of numbers (sometimes the (42=16)th member of a class); 

2) the sum of the first 4 members of a class; 

3) the sum of 4 consecutive members of a class, starting with the 4th; 

4) a property of either the 4th member or the first 4 members of a class of mathematical objects, or of 

the square (symbol of the Tetrad) or square array of integers or mathematical objects, or of a 

tetractys array or geometrical pattern of integers with orthogonal symmetry. 

 

subatomic world. 

The mathematical counterpart of the Pythagorean metaphysical doctrine of the Tetrad will be called the 
“Tetrad Principle.” This states: 

The most obvious example from superstring theory of this principle is its prediction that space-time has 10 
dimensions, where 10 is the fourth triangular number: 

10 = 1 + 2 + 3 + 4. 

Many more will be encountered later. No claim is made for the converse of this principal, e.g., the fourth (or 
16th) member or the first four members of any class of mathematical objects always quantify a parameter 
governing fundamental processes. The Tetrad Principle is a necessary, but not sufficient, condition for a 
number to be of significance to the subatomic world. This means that a number which is predicted by a 
theory as having fundamental significance in the subatomic world and which is consistent with the Tetrad 
Principle is not necessarily an actual parameter of the physics of this world. The fact that examples to be 
discussed in Section 2 can be found which show how this principle prescribes parameters of the theories of 
superstrings and bosonic strings does not in itself indicate that these string theories are true. Taken 
individually, such examples merely demonstrate that they satisfy a necessary criterion for being valid. 
What, however, turns this criterion into a potent principle is the large degree to which these two theories 
support it. As Section 2 reveals, their degree of consistency with the Tetrad Principle so exceeds what 
chance would lead one to expect that such detailed conformity cannot plausibly be discounted as purely 
coincidental. Instead, it is indicative of a powerful, hitherto unrecognised principle at work prescribing the 
mathematics of fundamental phenomena — one which the Pythagoreans appear to have intuited in their 
emphasis on the importance of the number 4 to the study of nature. 

The tetractys is but one member of an infinite series of tetractyses in which the nth member Tn is generated 
by replacing each yod in the (n–1)th member by a tetractys, two adjacent yods being substituted by two 

 

    0th-order          1st-order                    2nd-order 
     tetractys           tetractys                      tetractys 
      (T0)             (T1)                         (T2) 

tetractyses that share a corner (Fig. 5). The Pythagorean Monad — the geometrical point — is the first 
member T0 of this series (the 0th-order tetractys), the Pythagorean Triangle (1st-order tetractys) is the 
second member T1, the 2nd-order tetractys T2 is the third, and so on. The Tetrad Principle prescribes 
properties of higher order tetractyses as well as T1 because they, too, are paradigms of whole systems, 
albeit more differentiated. Because of its importance to our discussion in Section 3, we illustrate below how 
the Tetrad Principle prescribes properties of T2: 

1) number of yods = 85 = 40 + 41 + 42 + 43; 

etc 

Figure 5 
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2) number of yods surrounding its centre = 84 = 12 + 32 + 52 + 72; 
3) number of corners () of 1st-order tetractyses = 15 = fourth Mersenne number = fourth triangular 

number after 1; 
4) number of sides of 1st-order tetractyses = 30 = 12 + 22 + 32 + 42; 
5) number of hexagonal yods (⚫) = 70 = fourth, 4-dimensional, tetrahedral number after 1. 

2. Tetrad Principle in string theories 
In this section we shall illustrate the powerful role of the Pythagorean Tetrad Principle in prescribing the 
mathematical character of superstring and bosonic string theories by making explicit the arithmetic and 
geometric connections between the tetractys, the number 4 (as well as the integers 1, 2, 3 & 4) and group-
theoretical parameters of the superstring gauge symmetry groups E8×E8, E8 and its exceptional subgroups. 
Examples of how the Tetrad Principle defines parameters of these two string theories are listed below: 

1) Dimensionality of superstring space-time = 10 = 1 + 2 + 3 + 4, whilst large-scale space-time is 
4-dimensional. As the 4th triangular number, 10 is symbolised by the Pythagorean tetractys (Fig. 6). But 
this representation of the perfect Decad central to the number philosophy of Pythagoras is not merely a 
way of expressing the integers 1, 2, 3 & 4, as scholars have traditionally believed. It is the paradigm for 

superstring space-time itself, as its following physical interpretation demonstrates: the three yods at the 
corners of the tetractys not only define the shape of the simplest geometrical figure — the triangle — but 
also symbolise the dimensions of large-scale space in which the fundamental particles — superstrings 
— move. The six hexagonal yods at the corners of the hexagon symbolise the six higher, compactified 
dimensions predicted by superstring theory, whilst the yod at the centre of the tetractys denotes the 
dimension of time. Just as the nine yods on the boundary of the tetractys delineate its shape, so they 
denote the nine form-creating spatial dimensions of superstrings. The differentiation: 

10 = 1 + 3 + 6 

between uncompactified and compactified dimensions of the 10-dimensional space-time predicted by 
superstring theory thus finds its geometrical counterpart in the tetractys. A modern-day Pythagorean 
would account for this analogy by declaring that the identity of number and form implies that the 
dimensionality of space-time — the precursor of form — must conform to the 10-fold nature of Unity, the 
Monad which, being the source of number, is also the origin of material form. 

2) According to the Pythagoreans, the integers 1, 2, 3 & 4 symbolised by the four rows of yods in the 
tetractys define, respectively, the dimensionless point, the 1-dimensional line with its two endpoints, the 
2-dimensional triangle with its three corners (hence, in general, surface) and the 3-dimensional 
tetrahedron with its four corners (hence, in general, volume) (Fig. 7). The four stages of generation from 
 

                  Points     lines     triangles      tetrahedra      Total 
                    1          0          0              0            1 
                    2          1          0              0            3 

                    3          3          1              0            7 

                    4          6          4              1           15 

                                                           Total = 26 

Figure 7 

a point of the simplest polyhedron are an illustration of the Pythagorean doctrine of a four-fold sequence 
in the generation of form. They comprise 26 points, lines, triangles and tetrahedra. In other words, 26 
geometrical elements are required to create the simplest solid in four steps. Compare this with the fact 
that the critical dimension of space-time for free bosonic strings to have no negative-probability ghost 
states (5) and for the theory to be Lorentz-invariant (6) is 26. This is not a coincidence but an example of 
the Tetrad Principle generating identical numbers in contexts that, although ostensibly unrelated, are 

Figure 6 

● = macroscopic spatial dimension 
○ = compactified spatial dimension 
□ = time dimension 
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n                       Combinations         Number of combinations = 2n – 1 
1        A          A                                   1 

2      B    C         B, C, BC                              3 

3         D    E    F        D, E, F, DE, DF, EF                     7 

4      G    H    I    J      H, I, GH, GI, GJ, HI, HJ, IJ, 

                    GHI, GHJ, IJ, HIJ, GHIJ                 15 

                                                Total =    26 

analogous in the sense that both the tetrahedron and bosonic string are basic forms, the former in the 
large-scale world and the latter in the subatomic world. 

More generally, 26 is the number of combinations of 10 different objects selected from the four rows of a 
tetractys without mixing between rows (Fig. 8). As 2n – 1 is the total number of different combinations of 
n objects and Mn = 2n – 1 is, by definition, the nth Mersenne number, 26 is the sum of the first four 
Mersenne numbers 1, 3, 7 and 15, indicating how the Tetrad Principle determines the dimensionality of 
space-time predicted by bosonic string theory. 

The number 26 can be represented as a tetractys array of the first four powers of 2: 

                                                                 20      =   1 
                                                              20  21     =   3 
                                                            20  21  22   =   7 
                                                        20   21  22  23  = 15 

                                  Total = 26 

This array has one other orientation: 

                                                   23           = 1 × 23 = 8 
                                                22  22         = 2 × 22 = 8 
                                              21  21  21        = 3 × 21 = 6 
                                           20  20  20  20       = 4 × 20 = 4 

The sum of the four powers 20 at its base is 4, the dimension of macroscopic space-time, the sum of the 
three powers 21 is 6, the number of compactified dimensions of superstrings, and the sum of the 
remaining powers of 2 is 16, the number of spatial dimensions of bosonic strings whose compactification 
was suggested originally by Freund (7) to generate E8×E8-invariant superstrings. The bifurcation: 26 = 
10 + 16 is reproduced in this powers-of-2 representation in an intuitively more fundamental way: 

                       23                   23 

                     22  22                             22   22 

        26     =     21  21  21     =                   +     21  21  21 

                  20  20  20  20        20                20       20   20 

i.e., the number (10) of superstring dimensions is the sum of the three powers of 2 at the form-defining 
corners of the tetractys and the number (16) of compactified, purely bosonic dimensions is the sum of 
the seven powers of 2 located at the hexagonal yods of the tetractys. 

3) The square — the geometrical symbol of the Tetrad — arithmetically defines the number 26 in the 
following ways: 
A). As 

                                22   42   62   82 
 
                                242         102 
                       2600 = 
                                222         122 

                                202  182 162  142 

and 

16 

10 

Figure 8 
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             13           23                   4     4     4     4 
                                                  4        4        4 
                                             4     4     4     4 
                                        = 100 =             4        4       4 
                                             4     4     4     4 
                                                    4        4        4 
             43           33                   4     4     4     4 

(a square divided into tetractyses contains 25 yods and 100 = 25×4), 26 is the ratio: 

 

B). 26 is the arithmetic mean of the first 25 even integers up to 50: 

As 
          14 
       24   24 

26×50 = 15 + 25 + 35 + 45 =               34   34   34 
 44   44   44   44 

and 

2 + 4 + 6 +… +     50 

       25 
26 = = 

26 = 
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        42 
     32   32  

50 =             22   22   22 
12   12   12   12’ 

26 has the following representation in terms of 1, 2, 3 & 4: 

         14 
      24   24 
   34   34   34 

44   44   44   44 

26 = 
         42 
      32   32 
   22   22   22 
12   12   12   12 

4) Number of dimensions of macroscopic space-time = 4, the fourth positive integer; 
number of dimensions of superstring space-time = 10 = fourth triangular number; 
number of bosonic string dimensions whose compactification generates superstrings = 16 = fourth 
square number; 
number of compactified bosonic string dimensions = 22 = fourth pentagonal number = sum of 1, 2, 3 & 
4 raised, respectively, to the powers 4, 3, 2 & 1: 

   14        23 

 
22 = 

 
   41        32 

5)  As the geometrical symbol of the Tetrad, a square divided into four tetractyses generates the number of 
spatial dimensions of bosonic strings and differentiates between superstring and purely bosonic string 
dimensions: 

 

25 =                    =  16 () + 9 (⚫), 
 

where 16 (fourth square number) is the number of bosonic string dimensions whose compactification 
generates superstrings with nine remaining spatial dimensions (9 = fourth odd integer after 1). The 
central yod (⚫) symbolises the longitudinal dimension of a string, the surrounding 24 (= 1×2×3×4 = 4!) 
yods represent the 24 transverse dimensions of a bosonic string and the surrounding eight yods (⚫) 
denote the eight transverse, purely superstring dimensions (8 = fourth even integer). 25 is the 
arithmetic mean of the cubes of the first four integers: 

    13 + 23 + 33 + 43 

        4 

6) The rank 8 of the unified gauge symmetry group E8 is the fourth even number. The rank 16 of E8×E8 is 
the fourth square number. 

7) A tetractys-divided square expresses the dimension 248 of E8 in terms of 1, 2, 3 & 4: 

        13      13      13          13 

           23      23      23 

        13         33       33      13 

               23           43      23 

        13       33        33      13  

               23      23      23  
        13       13      13       13 

8)  Using the identity: 

25 = 
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6200 = 248×25 = 22 + 32 + 42 + ... + 262, 

where the first term, 22 = 4, is the Tetrad and the last term, 262, is the square of the sum of the first four 
Mersenne numbers, the square displays the following remarkable property of the number 248: 

        32       52     72         92                     248     248     248     248 

               122         142         162                                248        248       248 

       252          42        62       112                     248     248     248     248 

               262          22         182                =              248        248       248 

       232       162         82       132                     248     248     248     248 

               242         222        202                                     248        248        248 

       212       192     172     152                     248     248     248     248 

Starting with the Tetrad 22 = 4 at the centre of the square and assigning the 24 (=4!) squares 32, 42, ... 
262 to the surrounding 24 yods of the four tetractyses, with squares of even integers inside the square 
and squares of odd integers on its boundary, the sum of these 25 squares is that resulting from 
assigning the number 248 to each yod in the square. 

9)  Starting with the fourth triangular number T4 = 10, the sum of the first (4+4=8) polygonal numbers of 
the fourth order is 248, which is the dimension of the superstring gauge symmetry group E8: 

The sum: 

of the first four polygonal numbers represented by regular polygons with odd numbers of corners is the 
number of non-zero roots of E8 of length squared 2 of the kind: 

                                ui  uj                                   i, j = 1, 2,…8 

where the ui are eight orthonormal unit vectors. The Tetrad also expresses this number as 

7    7    7    7 
7    7    7    7 
7    7    7    7 
7    7    7    7 

where 7 is both the fourth odd number and the fourth prime number. 112 is the 7th heptagonal number 
(note that the heptagon is 7-sided). The Tetrad also defines the number (128) of non-zero roots of E8 of 
the kind: 

                             ½( u1  u2  …..  u8)                     (even # of + signs) 

because 128 = 27 = 47/2 = (44th prime number)½. The total number of non-zero roots of E8 is 

         4! 
      4!   4! 

      240 =       4!   4!   4!  
4!   4!   4!   4! 

112 = 
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This number has also the representation: 

                                           16 (=42) 

                                       14   14 

                                   12   12   12 

                               10   10   10   10 

                                8    8    8    8 

                            6    6    6    6    6 

                        4    4    4    4    4    4 

                    2    2    2    2    2    2    2 

                           112            128 

It contains 36 even integers ending in the fourth square number 16, where 36 is the sum of the first four 
even integers and the first four odd integers (it is also 4×9, where 9 is the fourth odd integer after 1). 
The sum of the shaded triangular array of 15 integers is 112, and the sum of the remaining 21 integers 
is 128 (15 = eighth odd integer, where 8 = fourth even integer, and 21 = 10th odd integer after 1, where 
10 = fourth triangular number). The sum of the 15 integers inside the boundary of the array of 36 
integers is 100, which is the (1+2+3+4=10)th square number, and the sum of the 21 integers on the 
boundary is 

140 = 12 + 22 + 32 + 42 + 52 + 62 + 72, 

namely, the seventh square pyramidal number (7 = fourth prime/odd number). The Tetrad thus 
differentiates between the two types of non-zero roots of E8. It also determines the eight zero roots of 
E8 because eight is the fourth even integer. 

As 24 = 52 – 1 = 3 + 5 + 7 + 9, 

            24            3           5           7           9 
             24  24          3   3         5   5         7   7         9   9 

             240 =    24  24  24    =    3   3   3  +   5   5   5  +  7   7   7   +   9   9   9 
                   24  24  24  24      3   3   3   3   5   5   5   5   7   7   7   7   9   9   9   9 , 

i.e., 240 is the sum of 

                      4                4         8 
          4    4 

              40 =        4    4    4      = 
    4    4    4    4    

     16        12 

odd integers arranged as 4 tetractys arrays of the first 4 odd integers after 1. E8×E8 has 480 non-zero 
roots. Since 480 = 16×30 = 42×(12 + 22 + 32 + 42) 

                                42         82 
 
                            = 
 
                               162        122 

this group parameter is the sum of four square numbers spaced four units apart, starting with the fourth 
square. The number of zero roots of E8×E8 is 16, the fourth square number. These examples illustrate 
how the Tetrad Principle defines group theoretical parameters of the heterotic superstring gauge 
symmetry group E8×E8. 

10) Defining the two possible tetractys arrays of the nth powers of 1, 2, 3 & 4: 

                  4n                    1n 
                3n   3n                    2n   2n 

           tn        2n   2n   2n      ,        Tn        3n   3n   3n                           (n = 0, 1, 2, 3, etc) 
          1n   1n   1n   1n            4n   4n   4n   4n 
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as To = to = 10 and Tn  tn for n = 1, 2, 3, 4, there are nine different numbers generated by the values n 
= 0, 1, 2, 3, 4 (9 = 4th odd integer after 1). Remarkably, their sum is 

2480 is the number of space-time components of the 248 ten-dimensional gauge fields of E8. The 
Tetrad and the tetractys thus define this physical parameter of superstring theory. The sum above may 
be written: 

The nine different tetractys arrays of powers of 0, 1, 2, 3 & 4 not only sum to 2480 but also differentiate 
between the (1+7) zero roots of E8 and its 240 non-zero roots! 

11) Using the identity 
1240 = 12 + 22 + 32 + 42 + ... + 152, 

where 

              20             21 
                                     4        4        4        4 
       15 =                  =            +       +        +       =  24 – 1 
                                     1        2        3        4 
               23       22 

 
  4 

n=1 

Figure 9. The sum of the 
integers 1-15 in a cross 
pattée array is 4960. 

4960 = 
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is the fourth Mersenne number, the cross pattée array of integers 1–15 shown in Figure 9 sums to 
4960. This is the number of the components of the 496 10-dimensional gauge fields of E8×E8. There 
are 480 integers in the representation, where 480 is the number of non-zero roots of E8×E8, of which 

integers form the boundary of the cross pattée. The 240 integers comprising a pair of arms of the cross 
sum to 2480, the number of space-time components of the 248 gauge fields of E8. Of these integers, 

                                   12       32 
 

84 = 

72       52 

integers form the boundary of a pair of arms. This ancient religious emblem, whose four arms 
symbolise the Tetrad, thus defines the number of space-time components of all the gauge fields 
mediating the E8-invariant superstring force. 

12)  According to Aristotle, the Pythagoreans gained mathematical insights through their use of the 
gnomon, or carpenter's square (8). For example, by sandwiching gnomons inside one another with 
marked out points, they found that this generates a square array of points whose number is the sum of 
the (odd) numbers of points in successive gnomons, i.e., 

This made them realise that the square of any integer n is the sum of the first n odd integers. In 
particular, four gnomons generates the fourth square 16 as a 4×4 square array of points whose 
number is the sum of the first four odd integers — the numbers of points in successive gnomons: 

                                16 = 42 = 1 + 3 + 5 + 7. 

We pointed out in Section 1 that 

                                84 = 12 + 32 + 52 + 72 

is the number of yods surrounding the centre of a 2nd-order tetractys. The sum of these four squares 
assigned to points along four successive gnomons is 

                 12    32    52    72 
                                            13       33 
                 32    32    52    72 
         496 =                         = 
                 52    52    52    72 
                                            73       53 
                 72    72    72    72 

The sum of the cubes of the first four odd integers is the crucial dimension 496 of the non-abelian 
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gauge symmetry group governing superstring interactions that physicists Michael Green and Gary 
Schwarz found to be free of quantum anomalies (9). This illustrates par excellence the prescriptive 
power of the Tetrad Principle and substantiates the title: “Holding the Key of Nature” that the 
Pythagoreans assigned to the number 4 (10). 

Just as four gnomons generate the dimension 496 of E8×E8 from the squares of the first four odd 
integers, so 10 (=1+2+3+4) gnomons generate the dimension 133 of E7, the largest exceptional 
subgroup of E8, from the first 10 odd integers: 

 

100 (= 13+23+33+43) odd integers make up the 10 gnomons. 1330 is also the sum of the 10th set of the 
first seven types of polygonal numbers (7 = fourth prime/odd number): 

T10 + S10 + P10 + H10 + h10 + O10 + N10 = 1330. 

13) The hexagon is the fourth regular polygon. If the first 16 (=42) hexagonal numbers are assigned to 
successive dots in a 4×4 square array of dots, the last and largest hexagonal number is 

H16 = 496, 

which is the dimension of E8×E8. Using the identity: 

Hn = 4Tn-1 + n 

(Appendix B), then 
H16 = 4T15 + 16 = 480 + 16. 

This compares with the fact that the 496 roots of E8×E8 consist of 480 non-zero roots and 16 zero 
roots. 

14) The number of hexagonal yods in an n-sided regular polygon whose sectors are divided into three 
tetractyses is 

H(n) = 13n 

(Appendix C). A square (n=4) has 13×4 = 52 hexagonal yods and a hexagon (n=6) has 13×6 = 78 

hexagonal yods (Fig. 10). The four-sided square thus defines the dimension 52 of the rank-4 
exceptional group F4, whilst the fourth regular polygon (the six-sided hexagon) defines the dimension 
78 of the rank-6 exceptional group E6, both groups being subgroups of E8. 

The first 12 integers evenly spaced along the sides of a square, four integers to a side, add up to 78: 

                                1    2   3   4 

                                12         5 

                                 11         6 

                                 10   9   8   7 

15) A square whose sectors are turned into 2nd-order tetractyses (Fig. 11) has 288 yods surrounding its 
centre, where 

                         288 = 11 + 22 + 33 + 44 = 1! + 2! + 3! + 4! 

78 = 

Figure 10 78 = 52 = 
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                                3    5   7   9 
                                11  13  15  17 
                                19  21  23  25 
                                27  29  31  33 

showing how these integers 1, 2, 3 & 4 express this number. Of these yods, 

                              4 
                        4    4 
             40 =     4    4    4    = 

              4    4    4    4  

are corners of 1st-order tetractyses, leaving 248 hexagonal yods (shown by (•) yods in Fig. 11). The 
square — the geometrical symbol of the Pythagorean Tetrad — thus generates the dimension of E8 as 
well as its rank-4 exceptional subgroup F4.  Indeed, the latter number is also present in this 

representation as the number of hexagonal yods (  ) in tetractyses at the corners of the 2nd-order 
tetractyses that do not also belong to adjacent tetractyses. 

Appendix D shows in general that an n-sided regular polygon divided into 2nd-order tetractyses has 
72n yods surrounding its centre (72 = 36th even integer, where 36 is sum of the first four even integers 
and the first four odd integers). Of these, 10n yods are corners of 10n 1st-order tetractyses, leaving 
62n hexagonal yods. The number of yods surrounding the centre of an octagon = 72×8 = 576 = (4!)2 

                                36  36  36  36 

                                36  36  36  36 

                                36  36  36  36 

                                36  36  36  36 

where 
 

 

 

 

Of these 576 yods, (108=80) yods are corners of 40 1st-order tetractyses, where 

 
 

 

 

leaving (576–80=496) hexagonal yods (notice that both 36 and 80 can be represented by octagonal 
arrays of integers, the former consisting of the first eight integers and the latter consisting of the first 
eight odd integers after 1). The octagon thus defines the dimension 496 of E8×E8, the direct product 
nature of the unified gauge symmetry group of superstrings reflecting the fact that an octagon is 
generated from two identical squares by rotating one relative to the other through an angle of 45°. 

1 

2 

3 

4 

5 

6 

7 

8 

36 = 

= (33 = 1! + 2! + 3! + 4!) 

4 8 

12 16 

Figure 11. The square embodies the 
dimension 248 of the superstring gauge 
symmetry group E8 as the 248 hexagonal 
yods belonging to its four sectors when 
they are 2nd-order tetractyses. 

= 

248 = 

80 = 92 – 1 = 

5 

7 

9 

11 

13 

15 

17 

3 
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16) 496 as a perfect number 
The ancient Greeks classified numbers not only as even or odd, prime or composite, but also as 
excessive, defective or perfect. In excessive (or superabundant) numbers the sum of the divisors is 
larger than the number. In defective (or deficient) numbers, the sum is smaller than the number. 
Perfect numbers are equal to the sum of their divisors. The last of the 36 propositions in Book IX of 
Euclid's Geometry asserts that, if (2n–1) is prime, then 2n-1(2n–1) is a perfect number. This means that 
all perfect numbers of this form are even. In a work published posthumously in 1849, the 
mathematician Léonard Euler proved the converse of this proposition that all even perfect numbers are 
of the form given by Euclid. If the nth Mersenne number Mn = 2n – 1 is prime, then 2n-1 Mn is perfect (M1 
= 1 is not regarded as a prime number). The first four perfect numbers: 

n Mn 2n-1Mn 

 
2 
3 
5 
7 

 
3 
7 
31 
127 

 
6 
28 
496 
9128 

were known to the ancient Greeks, the neo-Pythagorean Nichomachus being known to have spent 
considerable time hunting for 496 and 8128.* 496 is therefore the third perfect number. 

The first Mersenne number M1 = 1 does not define 1 as a perfect number because of the convention 
that 1 is not regarded as a prime number. It is amusing that 496 would be the fourth perfect number if 
this convention were not adopted, in agreement with the Tetrad Principle that the Pythagorean Tetrad 
defines members of classes of numbers or mathematical objects which have significance to the 

physics of nature. However, this principle is still upheld because 496 is defined by n = 5, i.e., the fourth 
of the integers after 1, which the ancient Pythagoreans regarded not as a number but as the source 
(Monad) of all numbers. 

As the sum of its factors, 496 is 

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248. 

Using the theorem (12) that the product of the factors, including itself, of the perfect number P=2n-1Mn 
is Pn, we see that, of all perfect numbers, 496 (n = 5) is uniquely connected to the Tetrad, 4, through its 
remarkable property: 

4964 = (1+2+4+8+16+31+62+124+248)4 = 1×2×4×8×16×31×62×124×248. 

Also, since every perfect number except 6 is (13) a partial sum of the series: 

13 + 33 + 53 + 73 + ...., 

then 496 (= 13 + 33 + 53 + 73) is defined by the Tetrad because it is the sum of the first four terms in 
this series. 

The ancient religious symbol of the pentagram provides a representation of the dimensions of E8 and 
E8×E8 (Figure 12). Notice in (b) that the first number is 24 = 42 and that the last number is 28 = 44. The 
square also provides a representation of the E8 group parameter 240: 

  24           25 

  240 = 

 27           26 

This again illustrates the Tetrad Principle because 240 is the sum of four successive powers of 2, 

 
* Pythagoras’ biographer Iamblichus may have known the fifth perfect number 33,550,336, although he 
does not give it. See reference 11, footnote, p. 74. 

23 

24 27 

26 25 

24 

25 28 

27 26 

248 = 496 = Figure 12 
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starting with 24 = 42, the fourth square number. Notice that 24 + 25 + 26 = 112, and that 27 = 128, the 
numbers of the two different types of non-zero roots of E8. 

Figure 13. 

17) A pentagram array of the cubes of the integers 1, 2, 3 & 4 represents the number 496 (Fig.13). Notice 
that the representation contains 16 (=42) cubes. 

18) A pentagon divided into tetractyses contains 31 yods, where 31 is the fourth Mersenne number above 
1 (Fig. 14). 496 is the 31st triangular number: 

496 = 1 + 2 + 3 + 4 + ... + 31. 

If we assign the 15 even integers 2, 4, ... 30 to the 15 yods on the boundary of the pentagon and the 
16 odd integers 1, 3, 5, ... 31 to the 16 internal yods, the sum of these 31 integers is 496, the sum of 
the interior integers is 256 (=44) and the sum of the integers on the boundary is 240 (=4!×(1+2+3+4)) 

(Fig. 15). Since 496 = 31×16 = 31×42, assigning the fourth square number to each of the 31 yods in 
the pentagon generates the number 496 (Fig. 16). The sum of the 15 squares on the boundary is 240, 
the same as the sum of the 15 internal squares surrounding the central integer 42 = 16. So, allocating 
the fourth square number to each of the 31 yods of a tetractys-divided pentagon not only generates the 
number of roots of E8×E8 but also differentiates between the number (16) of its zero roots and the 
number (240+240=480) of its non-zero roots. Alternatively, if the fourth square 16 is assigned to the 
centre of a tetractys-divided pentagon and the 15 successive even integers 18, 20, … 46 are assigned 
to the 15 yods on its boundary, the sum of the (42=16) even integers that start with 16 is 496 (Fig. 17). 

Figure 14. 

496 = 

Figure 15 

496 = 

Figure 16 

31 = 

Figure 17 
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As 
240 = 5×48 = 5(72–1) = 5(3 + 5 + 7 + 9 + 11 + 13), 

this number is the sum of the 30 odd integers surrounding the central integer 1 in a five-pointed array 
of consecutive odd integers (30 = fourth square pyramidal number) (Fig. 18). As the sum of the odd 
integers 3, 5, ... 13 in each point, the number 48 is the seventh highly composite number (7 = fourth 
prime/odd number). It is the smallest integer to have 10 factors, including unity and itself (14). It is thus 
defined by the Decad, called by the Pythagoreans “All Perfect.” 48 is further related to the number 240 

because 

                                                        240 
                     240    240 

492 – 1 = 2400 = 3 + 5 + 7 +… + 97 = 2400 =     240    240    240 
                                                 240    240    240    240 

is the sum of the first 48 odd integers after 1. 

These examples demonstrate the Pythagorean nature of superstring theory in the sense that they show 
that the group-theoretical parameters of E8×E8, and E8 are prescribed by the Tetrad Principle and find 
natural representation or expression in terms of the tetractys, the Tetrad and the integers 1, 2, 3 & 4. 

4. The Platonic solids 
It is well known that five — and only five — polyhedra with equi-distant corners can exist in 3-dimensional 
space. They are the tetrahedron, cube, octahedron, icosahedron and dodecahedron (Fig. 19). The five 
regular polyhedra are known as the five Platonic solids, not because they were discovered by the Greek 

philosopher Plato but because of the special emphasis he placed upon them in expounding Pythagorean 
cosmology in his book Timaeus, where they were first described in print. 

The early Pythagoreans knew of all five polyhedra, for in the Fragments of Philolaus, regarded by scholars 
as the earliest surviving (and therefore most reliable) Pythagorean text, Philolaus, a student of Lysis, one of 
the two Pythagoreans who escaped the persecution of the Pythagorean school at Croton in southern Italy, 
wrote that “there are five bodies in the sphere: fire, water, earth, air and the circle of the sphere which 
 

 
Number of polyhedral corners = V. 
Number of polyhedral sides = E. 
Number of polyhedral faces = F. 
Number of triangles in polyhedral face = I (I = 3 for tetrahedron, octahedron & icosahedron, = 4 for cube, = 
5 or dodecahedron). 
 

Figure 18 

tetrahedron octahedron cube icosahedron dodecahedron 

Figure 19. The five 
Platonic solids. 

Table 2 
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POLYHEDRON FACE V E F I 

Tetrahedron 
Cube 
Octahedron 
Icosahedron 
 
Dodecahedron 

Triangle 
Square 
Triangle 
Triangle 

Subtotal = 
Pentagon 

Total = 

4 
8 
6 

12 
30 
20 
50 

6 
12 
12 
30 
60 
30 
90 

4 
6 
8 

20 
38 
12 
50 

3 
4 
3 
3 
 
5 

makes the fifth” (15). The ancients believed that the tetrahedron, cube, octahedron and icosahedron were 
the shapes of the atoms of, respectively, the elements Fire, Earth, Air and Water, whilst the cosmic sphere 
containing the stars was made out of the dodecahedron because the latter most resembled the perfect 
shape of the sphere. 

Table 3 

Number of corners of triangles  C = V + F. 

Number of sides of triangles  S = E + IF. 

Number of triangles  T = IF. 
 

POLYHEDRON C S T C + S C + S + T 

Tetrahedron 
Cube 
Octahedron 
Icosahedron 

Subtotal = 
Dodecahedron 

Total = 

8 
14 
14 
32 
68 
 32 
100 

18 
36 
36 
90 
180 
 90 
270 

12 
24 
24 
60 
120 
 60 
180 

26 
50 
50 
122 
248 
122 
370 

38 
74 
74 
182 
368 
182 
550 

Suppose that each triangular face of the tetrahedron, octahedron and icosahedron is divided into three 
triangular sectors, the square faces of the cube are divided into four triangles and the pentagonal faces of 
the dodecahedron are divided into five triangular sectors (Fig. 20). Table 2 shows the number of corners, 

edges and faces in each solid. Table 3 shows the numbers of corners, sides and triangles in their faces. 

The five Platonic solids contain 

                         13         23             10 
                                                10  10 
                 100 =                 =      10  10  10                 (10 = 1 + 2 + 3 + 4) 
                                           10  10  10  10  
                         43        33 

corners of triangles and 

                                             55 
                                          55  55  
                               550 =    55  55  55 
                                    55  55  55  55 
triangles and their corners and sides, where 

                                           1 
                                         2    3 
                               55  =     4    5    6 
                                      7    8    9   10 

is the 10th triangular number (10 = fourth triangular number). The Tetrad and Decad therefore define these 
geometrical parameters of the faces of the Platonic solids. 

According to Table 3, the tetrahedron — the simplest regular polyhedron — contains 26 corners and sides, 
of which four are polyhedral corners, six are polyhedral edges and 16 are corners and sides created by the 

Figure 20. The numbers of yods in 
the triangle, square & pentagon. 

19 25 44 
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division of its faces into triangles. Compare this with the requirement in bosonic string theory that the 26 
dimensions of space-time consist of the four dimensions of Einstein’s space-time, the six higher 
compactified dimensions of superstrings and the 16 higher purely bosonic string dimensions. We see that 
the faces of the tetrahedron embody numbers defining the dimensional bifurcation of the string. This is an 
example of how the Tetrad Principle defines a physical parameter of nature, for the tetrahedron has four 
corners and four faces. Table 3 shows that 248 points and lines are needed to construct out of 120 
triangles (120 = sum of squares of the first four even integers) the 38 faces of the four Platonic solids 
symbolising Earth, Air, Fire and Water (38 = 19th even number, 19 = 10th odd integer, 10 = fourth triangular 
number). The number of gauge bosons mediating superstring forces is thus the minimal number of 
geometrical elements required to define the triangle-divided surfaces of the first four regular polyhedra. 
Notice that the number of their polyhedral corners is: 

                                     12             22 
 
                            30 = 
 
                                     42             32 

the number of polyhedral corners and edges delineating their faces is 

                                           9 
                                         9  9 
                                 90 =   9  9  9  
                                     9  9  9  9 

where 9 is the fourth odd integer after 1, and that the number of their corners, edges and faces is 

128 = 27 = (44th prime number)1/2. 

Now consider each triangle in the faces of the Platonic solids to be a Pythagorean Triangle or tetractys, so 
that four yods lie along each polyhedral edge (Fig. 20). Table 4 shows the various yod populations of the 
regular polyhedra. The tetrahedron has 56 yods, where 56 = 7×8 (7 = fourth prime/odd integer, 8 = fourth 
even integer), of which 8 yods are corners of tetractyses, 16 yods lie on its edges (16 = fourth square 
number) and 48 yods are hexagonal yods (48 = 7th highly composite number, 7 = fourth prime/odd 
number). Once again, the Tetrad defines these properties. 

Table 4 

Number of yods on faces of polyhedron  N = V + 2E + (3I+1)F. 

Number of corners of tetractyses  C = V + F. 

Number of hexagonal yods  H = N – C = 2E + 3IF. 

Number of yods on edges of polyhedron  B = V +2E. 
 

POLYHEDRON N B C H  

Tetrahedron 
Cube 
Octahedron 
Icosahedron 

Subtotal = 
Dodecahedron 

Total = 

  56 
110 
110 
272 
548 
272 
820 

  16 
  32 
  30 
  72 
150 
  80 
230 

    8 
  14 
  14 
  32 
  68 
  32 
100 

     48 
     96 
     96 
   240 
   480 
   240 
   720 

 
240 

The cube and octahedron each has 110 yods, where 

                                               2 
                                            4    6 
                              110 =      8   10  12 
                                    14  16  18  20. 

The icosahedron and dodecahedron each has 272 yods, where 

                                  2     4    6    8 
                                  10  12  14  16 
                                  18  20  22  24 
                                  26  28  30  32 

272 = 
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The first four Platonic solids have 
137       137 

 
548 = 

                                          137       137 

yods, where 137 (the average number of yods in the first four polyhedra) is the 33rd prime number (33 = 1! 
+ 2! + 3! + 4!). Of these, 

  17       17 
 

68 = 
 

  17       17 

yods are corners of tetractyses, where 17 (the average number of corners) is the 7th prime number (7= 4th 
prime/odd number), and 
 

25        26 
 

480 = 
 

28        27 

yods are hexagonal. As the fourth regular polyhedron — the icosahedron — has 

24        25 
 

240 = 
 

27        26 

such yods in its 60 tetractyses, we find that the first four regular polyhedra have 480 hexagonal yods in their 
120 tetractyses (120=22+42+62+82), the fourth one having 240 such yods. The superstring gauge group 
E8×E8 has 480 non-zero roots and E8 has 240 such roots. A remarkable correspondence thus exists 
between these roots and the degrees of freedom symbolised by the hexagonal yods generated by the 
construction of the faces of the first four Platonic solids from tetractyses. 

6. Conclusion 
The symbol of the Pythagorean paradigm of wholeness — the tetractys — has manifested in particle 
physics as the 10-dimensional space-time predicted by superstring theory. However, this representation of 
the Pythagorean Decad is but the most rudimentary example of a powerful Tetrad Principle governing the 
form of the mathematical description of subatomic reality. Many examples have been given in the context of 
superstring theory and bosonic string theory of how the number 4 plays a pivotal role in defining classes 
(and members of classes) of mathematical objects that parameterise the physics of these fundamental (and 
as yet hypothetical) particles. Whilst coincidence might account for a few of these, the weight of evidence 
for the principle accumulated in this article renders such an explanation highly implausible. This is 
particularly so as the Tetrad Principle has been shown to define superstring and bosonic string parameters 
not only for a narrow range of numbers but also for mathematical objects that at first sight would seem most 
unlikely to have relevance to superstring theory, namely, the regular polyhedra, for the first four of which the 
dimension of E8 is embodied purely geometrically in their faces when divided into their sectors, whilst group 
parameters of E8 and E8×E8 appear in the yod population of their faces when their sectors are tetractyses. 
Such evidence of beautiful harmony between number and geometry points towards the existence of a 
conceptual scheme in which the Pythagorean paradigm of the tetractys has a central place. From the 
perspective of this more general theory, the theories of superstrings and bosonic strings would then be 
seen to be examples of how the Tetrad Principle determines the mathematics of the microphysical version 
of this universal theory of whole systems. This true ‘Theory of Everything’ is the mathematics underlying all 
sacred geometries, such as the Tree of Life and the Sri Yantra. Its relevance to particle physics is explored 
comprehensively in other research articles on this website. 
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APPENDIX A 
Proof of PN

n = ½[(N–2)n – (N–4)] 
The representation of PN

n consists of the superimposition of (n–1) regular polygons with 2, 3, 4, ... n dots 
along each of their N edges. The rth polygon has r dots per edge. The total number of dots in (n–1) 
separate polygons is 

Of these, there are 

2 + 3 + 4 + ... + (n–1) = ½n(n+1) – 1 

dots along one set of edges and 

1 + 2 + 3 + ... + (n–1) = ½n(n–1) 

dots along the set of adjacent edges. The total number of shared dots when the polygons are 
superimposed is 

½n(n+1) – 1 + ½n(n–1) = n2 – 1. 

The total number of unshared yods is 

½nN(n–1) – (n2–1) = ½n[(N–2)n – N] + 1. 

Superimposed, the (n–1) polygons have n dots along one shared edge and (n–1) dots along the adjacent 
shared edge. Hence the total number of dots in the representation is 

PN
n = (n–1) + n + ½n[(N–2)n – N] + 1 

       = ½n[(N–2)n – (N–4)] 
 

APPENDIX B 
The nth hexagonal number is 

Hn = ½n(4n–2) = 2n2 – n. 

The nth triangular number is 

Tn = ½n(n+1). 

Therefore, 
Tn-1 = ½n(n–1). 

             4Tn-1 = 2n(n–1) = 2n2 – 2n = Hn – n. 

Therefore, 



 

22 

  Hn = 4Tn-1 + n. 
 

APPENDIX C 
When divided into three tetractyses, each sector of an n-sided regular polygon contains 19 yods, of which 
15 are hexagonal (Fig. 21). Two hexagonal yods on each of two sides of the sector are shared with 
adjacent sectors. Each of the n sectors therefore contributes 13 hexagonal yods. Number of hexagonal 

yods in polygon  H(n) = 13n. 
 

APPENDIX D 
There are 85 yods in each sector of an n-sided regular polygon divided into n 2nd-order tetractyses. Of 

these, 13 yods on each of two sides are shared with adjacent sectors. Number of yods per sector 
surrounding centre of polygon = 85 – 13 = 72. Number of yods surrounding centre of n-sided polygon = 
72n. Each sector has 15 corners of 1st-order tetractyses, of which five corners on each of two sides are 
shared with adjacent sectors. Number of tetractys corners per sector surrounding centre of polygon = 15 – 
5 = 10. Number of tetractys corners surrounding centre of n-sided polygon = 10n. 

Figure 21  = hexagonal yod 


